The best constant of Sobolev inequality on a bounded interval

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Constant in Sobolev Inequality

The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...

متن کامل

On the Best Sobolev Inequality

We prove that the best constant in the Sobolev inequality (WI,” c Lp* with $= f i and 1 c p < n) is achieved on compact Riemannian manifolds, or only complete under some hypotheses. We also establish stronger inequalities where the norms are to some exponent which seems optimal. 0 Elsevier, Paris

متن کامل

Looking for the Best Constant in a Sobolev Inequality: A Numerical Approach

A numerical method for the computation of the best constant in a Sobolev inequality involving the spacesH2(Ω) and C0(Ω) is presented. Green’s functions corresponding to the solution of Poisson problems are used to express the solution. This (kind of) non-smooth eigenvalue problem is then formulated as a constrained optimization problem and solved with two different strategies: an augmented Lagr...

متن کامل

Symmetrization of Functions and the Best Constant of 1-DIM Lp Sobolev Inequality

1 Department of Computer Science, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan 2 Graduate School of Mathematical Sciences, Faculty of Engineering Science, Osaka University, 1–3 Matikaneyamatyo, Toyonaka 560-8531, Japan 3 Liberal Arts and Basic Sciences, College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino 275-8576, Japan 4 Department of Monozuk...

متن کامل

The Sharp Quantitative Sobolev Inequality for Functions of Bounded Variation

The classical Sobolev embedding theorem of the space of functions of bounded variation BV (Rn) into Ln (Rn) is proved in a sharp quantitative form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.08.054